Integration of Hidden Markov Modelling and Bayesian Network for fault detection and prediction of complex engineered systems
Morteza Soleimani,
Felician Campean and
Daniel Neagu
Reliability Engineering and System Safety, 2021, vol. 215, issue C
Abstract:
This paper presents a methodology for fault detection, fault prediction and fault isolation based on the integration of hidden Markov modelling (HMM) and Bayesian networks (BN). This addresses the nonlinear and non-Gaussian data characteristics to support fault detection and prediction, within an explainable hybrid framework that captures causality in a complex engineered system. The proposed methodology is based on the analysis of the pattern of similarity in the log-likelihood (LL) sequences against the training data for the mixture of Gaussians HMM (MoG-HMM). The BN model identifies the root cause of detected/predicted faults, using the information propagated from the HMM model as empirical evidence. The feasibility and effectiveness of the presented approach are discussed in conjunction with the application to a real-world case study of an automotive exhaust gas Aftertreatment system. The paper details the implementation of the methodology to this case study, with data available from real-world usage of the system. The results show that the proposed methodology identifies the fault faster and attributes the fault to the correct root cause. While the proposed methodology is illustrated with an automotive case study, its applicability is much wider to the fault detection and prediction problem of any similar complex engineered system.
Keywords: Complex engineered system; Fault detection and prediction; Hidden Markov modelling; Bayesian network; Mixture of Gaussians; Log-likelihood; Automotive Aftertreatment system (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832021003318
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:215:y:2021:i:c:s0951832021003318
DOI: 10.1016/j.ress.2021.107808
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().