EconPapers    
Economics at your fingertips  
 

An AIS-based deep learning framework for regional ship behavior prediction

Brian Murray and Lokukaluge Prasad Perera

Reliability Engineering and System Safety, 2021, vol. 215, issue C

Abstract: This study presents a deep learning framework to support regional ship behavior prediction using historical AIS data. The framework is meant to aid in proactive collision avoidance, in order to enhance the safety of maritime transportation systems. In this study, it is suggested to decompose the historical ship behavior in a given geographical region into clusters. Each cluster will contain trajectories with similar behavior characteristics. For each unique cluster, the method generates a local model to describe the local behavior in the cluster. In this manner, higher fidelity predictions can be facilitated compared to training a model on all available historical behavior. The study suggests to cluster historical trajectories using a variational recurrent autoencoder and the Hierarchical Density-Based Spatial Clustering of Applications with Noise algorithm. The past behavior of a selected vessel is then classified to the most likely clusters of behavior based on the softmax distribution. Each local model consists of a sequence-to-sequence model with attention. When utilizing the deep learning framework, a user inputs the past trajectory of a selected vessel, and the framework outputs the most likely future trajectories. The model was evaluated using a geographical region as a test case, with successful results.

Keywords: Maritime safety; Maritime situation awareness; Ship navigation; Trajectory prediction; Collision avoidance; Deep learning; AIS (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832021003409
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:215:y:2021:i:c:s0951832021003409

DOI: 10.1016/j.ress.2021.107819

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:215:y:2021:i:c:s0951832021003409