EconPapers    
Economics at your fingertips  
 

Remaining useful life prediction based on intentional noise injection and feature reconstruction

Lei Xiao, Junxuan Tang, Xinghui Zhang, Eric Bechhoefer and Siyi Ding

Reliability Engineering and System Safety, 2021, vol. 215, issue C

Abstract: The accurate remaining useful life (RUL) prediction is the foundation of prognostics and health management (PHM). The accuracy of RUL prediction model depends on not only the quality and quantity of degradation feature but also the prediction model. In most of the existing deep-learning based RUL prediction models, noise is considered harmful and has to be removed. Further, the correlation among sensory measurements is ignored. However, noise can boost the prediction performance if judiciously used. This paper proposes a new RUL prediction method where noise is intentionally added into a long short-term memory (LSTM) network. Additionally, correlation analysis is conducted among the sensory measurements to construct new degradation features as the inputs of the LSTM network. Validation of the proposed method was carried out on the C-MAPSS aero-engine lifetime dataset. Finally, the proposed RUL prediction model is compared to other the-state-of-the-art techniques.

Keywords: Remaining useful life; Feature reconstruction; Noise injection; Aero-engines (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832021003902
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:215:y:2021:i:c:s0951832021003902

DOI: 10.1016/j.ress.2021.107871

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:215:y:2021:i:c:s0951832021003902