Reliability monitoring of systems with cumulative shock-based deterioration process
Yousof Shamstabar,
Hamid Shahriari and
Yaser Samimi
Reliability Engineering and System Safety, 2021, vol. 216, issue C
Abstract:
Cumulative shock model is one of the shock-based degradation models. For the cumulative shock model, the system failure occurs when the total damages due to shocks exceeds a failure threshold. Control chart is a tool that can be used to monitor and control the reliability of a system. In this work, we propose a control chart based on the time between a fixed number of failures in the system with cumulative shock model deterioration. To this end, Phase-type (PH) distributions are utilized to find system lifetime distribution and to construct the control chart. An illustrative example is provided to assess the efficiency and accuracy of the proposed PH model. The average run length (ARL) and the average time to signal (ATS) criteria are used to evaluate the performance of the suggested control chart. The results show that the proposed control chart is effective in detecting the shifts in system reliability.
Keywords: Reliability monitoring; Cumulative shock model; Control chart; Phase-type distribution; Average time to signal (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S095183202100452X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:216:y:2021:i:c:s095183202100452x
DOI: 10.1016/j.ress.2021.107937
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().