Adaptive approach for estimation of pipeline corrosion defects via Bayesian inference
Kyeongsu Kim,
Gunhak Lee,
Keonhee Park,
Seongho Park and
Won Bo Lee
Reliability Engineering and System Safety, 2021, vol. 216, issue C
Abstract:
A framework to construct a model that predicts the corrosion defect distribution using a small amount of observation data is proposed in this study. A time-dependent generalized extreme value distribution was employed to consider the changing corrosion growth rate with time, and model parameters were estimated via Bayesian inferences to develop a robust prediction model. The model parameters were updated when a new batch of inspection data was available; previous data were not directly used but they indirectly assisted parameter estimation in the form of a prior distribution. In addition, an artificial data point representing a larger defect depth was added to the inspection data to ensure a conservative estimation of the model parameters and higher reliability of the model. The model was verified under three different cases, and the results showed that the suggested parameter estimation allowed the prediction model to adapt to the changing defect depth distribution in all three tested cases: 1) inspection data are available without measurement errors, 2) inspection data are available with measurement errors, and 3) the properties of the underground environment are drastically changed.
Keywords: Bayesian analysis; corrosion; adaptive estimation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832021005081
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:216:y:2021:i:c:s0951832021005081
DOI: 10.1016/j.ress.2021.107998
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().