Agent-based model on resilience-oriented rapid responses of road networks under seismic hazard
Li Sun,
Dina D'Ayala,
Rosemary Fayjaloun and
Pierre Gehl
Reliability Engineering and System Safety, 2021, vol. 216, issue C
Abstract:
This paper explores a new pathway towards seismic resilience of Road Networks (RNs) under earthquake hazards, by leveraging post-shock rapid responses as the key to minimize the functionality losses of RNs, especially in the immediate aftermath of earthquakes. Accordingly, an agent-based modelling (ABM) framework is developed to enable the nuanced examination on resilience of earthquake-damaged RNs, when different system repair approaches are considered. In this framework, those different approaches are predicated on the damage level of individual bridges and on the system recovery timeline, i.e. the response to rehabilitation need is considered as a function of the time elapsed from the event. Each approach is represented by a different agent, whose behaviour is shaped by a set of pre-defined behavioural attributes, while the interplay among those agents is also accounted for, during the entirety of post-shock recovery campaigns. To demonstrate its applicability, the ABM framework is applied to a real-world RN across Luchon, France. As shown by the case-study, post-shock rapid responses are found to be a viable strategy to increase the recovery rate of RNs’ functionality in the immediate-, and mid-term aftermath of damaging earthquakes, and ultimately, to improve the seismic resilience thereof.
Keywords: Seismic hazard; Resilience; Recovery; Rapid response; Partial repair; Road networks; Agent-based model (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S095183202100538X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:216:y:2021:i:c:s095183202100538x
DOI: 10.1016/j.ress.2021.108030
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().