EconPapers    
Economics at your fingertips  
 

Asymmetric inter-intra domain alignments (AIIDA) method for intelligent fault diagnosis of rotating machinery

Jinwook Lee, Myungyon Kim, Jin Uk Ko, Joon Ha Jung, Kyung Ho Sun and Byeng D. Youn

Reliability Engineering and System Safety, 2022, vol. 218, issue PB

Abstract: Despite the recent success of deep-learning-based fault diagnosis of rotating machinery, to enable accurate and robust diagnosis models, existing approaches proceed with the assumption that training and test data follow the same distribution. However, in practical industrial settings, variations in operating conditions and environmental noise can cause changes in the characteristics of the training and test data, called domain shift, resulting in performance degradation of the test data. To deal with these issues, this paper proposes an asymmetric inter-intra domain alignments (AIIDA) approach for fault diagnosis under various levels of domain shift. First, inter-domain alignment is conducted by minimizing the maximum mean discrepancy loss and domain adversarial loss. Next, intra-domain alignment is performed by adjusting the inconsistency loss. This approach allows the proposed AIIDA method to learn features that have lower inter-domain distance and higher intra-domain distance; thus, the fault diagnosis performance in the target domain can be significantly improved. Extensive experimental assessment that examines various scenarios across three bearing datasets is performed to validate the effectiveness of the proposed approach. Furthermore, a study comparing the proposed method with other existing methods demonstrates that the proposed method outperforms other methods.

Keywords: Unsupervised domain adaptation; Deep learning; Fault diagnosis; Rotating machinery; Inter-domain alignment; Intra-domain alignment (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832021006700
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:218:y:2022:i:pb:s0951832021006700

DOI: 10.1016/j.ress.2021.108186

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:218:y:2022:i:pb:s0951832021006700