Adaptive multi-objective optimization for emergency evacuation at metro stations
Kai Guo and
Limao Zhang
Reliability Engineering and System Safety, 2022, vol. 219, issue C
Abstract:
Evacuation is a critical issue at metro stations, where damage, or even death, could be caused due to unexpected accidents if without proper evacuation. Multi-objectives are often desired in the evacuation management, and evacuation strategies should be tailored due to the dynamic features of overcrowded passengers and high uncertainty at the metro stations. A simulation-based approach integrating Light Gradient Boosting Machine (LightGBM) and Non-dominated Sorting Genetic Algorithm III (NSGA-III) is proposed to realize the automatic evacuation evaluation and adaptive optimization at metro stations. A framework consisting of 3 objectives and 9 influential factors is developed for the evacuation evaluation and adaptive optimization. A LightGBM based meta-model is used to construct the relationship between influential factors and objectives. A LightGBM and NSGA-III integrated optimization algorithm is employed to automatically evaluate the evacuation events and seek the adaptive strategies for the station renovation in order to achieve a safe evacuation under specific conditions. A station model simulating a metro station in Singapore is constructed to test the effectiveness and applicability of the proposed approach. It is found that (1) Among 50 target station based cases, 33 failing cases (at least one of the objectives fails) are identified, and the automatic evaluation results indicate the studied metro station could successfully evacuate the passengers when the passenger volume is no more than 1000, but it is very likely to fail when a higher volume exists; (2) Adaptive optimization strategies can be found for every different scenario, and an average 24.8% of the improvement degree can be achieved for all scenarios; (3) The adaptive multi-objective optimization is more cost-effective, presenting an average cost efficiency 2.04, which is significantly higher than the average of the non-adaptive optimization cost efficiency, 0.57. The novelty of this research lies in that (a) A LightGBM-based meta-model is built to construct the relationship between desired multi-objectives and the influential factors, which lays the foundation for the evacuation management from multi-objective optimization perspective; (b) The LightGBM and NSGA-III integrated model can realize the automatic evacuation evaluation and accordingly provide the adaptive strategies under specific conditions.
Keywords: Emergency evacuation; Metro stations; Pedestrian behaviors; Evacuation prediction; Adaptive multi-objective optimization (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S095183202100689X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:219:y:2022:i:c:s095183202100689x
DOI: 10.1016/j.ress.2021.108210
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().