EconPapers    
Economics at your fingertips  
 

Remaining useful life prediction of bearings under different working conditions using a deep feature disentanglement based transfer learning method

Tao Hu, Yiming Guo, Liudong Gu, Yifan Zhou, Zhisheng Zhang and Zhiting Zhou

Reliability Engineering and System Safety, 2022, vol. 219, issue C

Abstract: The data distribution discrepancy between the training and test samples makes it challenging for the remaining useful life (RUL) prediction under different working conditions. Although various transfer learning methods focusing on minimizing the distribution discrepancy of global cross-domain features have been applied to address this issue, the inherent properties of each domain are always ignored. The domain private representations caused by it has a negative impact on the RUL prediction of another domain. This paper proposes a novel method called Deep Feature Disentanglement Transfer Learning Network (DFDTLN) to extract domain-invariant features. In the proposed method, shared domain-invariant representations and private representations are disentangled by a pair of joint learning autoencoders. The effectiveness of the proposed method is verified using IEEE PHM Challenge 2012 dataset. The comparison results show the deep features extracted by DFDTLN are more domain-invariant and suitable for RUL prediction.

Keywords: Remaining useful life prediction; Transfer learning; Deep feature disentanglement (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832021007407
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:219:y:2022:i:c:s0951832021007407

DOI: 10.1016/j.ress.2021.108265

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:219:y:2022:i:c:s0951832021007407