A non-Gaussian stochastic model from limited observations using polynomial chaos and fractional moments
Ruijing Zhang and
Hongzhe Dai
Reliability Engineering and System Safety, 2022, vol. 221, issue C
Abstract:
The reasonable representation of input random fields is the key element in the reliability analysis of practical engineering systems. In most engineering applications, the characterization of a random field often relies on limited measurements. Although the simulation of random fields with complete probabilistic information has been quite well-established, reconstructing a random field from limited observations is still a challenging task. In this paper, we develop a methodology for constructing non-Gaussian random model from limited observations based on polynomial chaos (PC) and fractional moments for real-life problems. Our method begins with the reduce-order representation of measurements by Karhunen-Loève (KL) expansion, followed by the PC representation of KL coefficients. The PC coefficients are further modeled as random variables, whose distributions are determined by a modified maximum entropy principle with fractional moments (ME-FM) procedure and a ME-FM-based bootstrapping. In this way, the developed non-Gaussian model enables to quantify the inherent randomness and the statistical uncertainty of the observed non-Gaussian field simultaneously. Since the developed non-Gaussian model is embedded into the well-established PC framework, our method facilitates the implementation of PC-based stochastic analysis in practical engineering applications, in which only limited probabilistic measures are available. Two numerical examples demonstrate the application of the developed method.
Keywords: Non-Gaussian model; Limited observations; Fractional moments; Bootstrapping; Karhunen-Loève expansion; Polynomial chaos (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832022000059
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:221:y:2022:i:c:s0951832022000059
DOI: 10.1016/j.ress.2022.108323
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().