EconPapers    
Economics at your fingertips  
 

Statistical modeling and reliability analysis of multiple repairable systems with dependent failure times under perfect repair

Brito, É der S., Vera L.D. Tomazella and Paulo H. Ferreira

Reliability Engineering and System Safety, 2022, vol. 222, issue C

Abstract: In repairable systems, a fundamental aspect to be considered is to predict the reliability of the systems under study. Establishing reliability models for multiple repairable systems, however, is still a challenging problem when considering the dependency or unobserved heterogeneity of component failures. This paper focuses on a special repair assumption, called perfect repair, for repairable systems with dependent failures, where only the failed component is restored to as good as new condition. A frailty model is proposed to capture the statistical dependency and unobserved heterogeneity. The classical inferential method for estimating parameters and the reliability predictors will be shown for models in repairable systems under the assumption of perfect repair. An extensive simulation study is conducted under different scenarios to verify the suitability of the model and the asymptotic consistency and efficiency properties of the maximum likelihood estimators. The proposed methodology can be especially useful for industries that operate with repairable systems subjected to the replacement of parts after failures and to non-quantifiable factors that can interfere with the failure times of these parts. We illustrate the practical relevance of the proposed model on two real data sets. The first deals with a set of 9 sugarcane harvesters, observed during a fixed period of time, whose cutting blades failed several times in this interval. The other deals with a set of 5 dump trucks whose diesel engines also had recurring failures during the observation period. Parametric inference is carried out under the power-law process model that has found significant attention in industrial applications.

Keywords: Failure intensity function; Frailty; Maximum likelihood estimation; Monte Carlo simulation; Power-law process; Renewal process (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832022000527
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:222:y:2022:i:c:s0951832022000527

DOI: 10.1016/j.ress.2022.108375

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:222:y:2022:i:c:s0951832022000527