EconPapers    
Economics at your fingertips  
 

Optimal life-cycle mitigation of fatigue failure risk for structural systems

Jorge Mendoza, Elizabeth Bismut, Daniel Straub and Köhler, Jochen

Reliability Engineering and System Safety, 2022, vol. 222, issue C

Abstract: Fatigue failure risk can be mitigated both by increasing the design fatigue capacity of the structural components and by conducting more frequent inspection and maintenance actions. The optimal combination of these two types of safety measure is structure dependent. It depends, among others, on the relative cost of the safety measures, the consequences of failure, the level of redundancy, the number of deteriorating components and the statistical dependence among components. In this article, a generic system representation is used to parametrise deteriorating structures according to these system characteristics. Based on this system representation, we investigate patterns of optimal life-cycle fatigue mitigation and provide recommendations for fatigue design. Results show that it can be cost-efficient to achieve system-level safety requirements with high component reliabilities at design and less frequent inspections. Furthermore, we show that the minimum requirements for fatigue design that are typically prescribed in design standards to avoid the need for inspections are not enough unless sufficient redundancy is ensured.

Keywords: Fatigue design; Inspection and maintenance; Structural reliability; Structural systems (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832022000655
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:222:y:2022:i:c:s0951832022000655

DOI: 10.1016/j.ress.2022.108390

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:222:y:2022:i:c:s0951832022000655