Health indicator for machine condition monitoring built in the latent space of a deep autoencoder
González-Muñiz, Ana,
DÃaz, Ignacio,
Abel A. Cuadrado and
GarcÃa-Pérez, Diego
Reliability Engineering and System Safety, 2022, vol. 224, issue C
Abstract:
The construction of effective health indicators plays a key role in the engineering systems field: they reflect the degradation degree of the system under study, thus providing vital information for critical tasks ranging from anomaly detection to remaining useful life estimation, with benefits such as reduced maintenance costs, improved productivity or increased machine availability. The reconstruction error of deep autoencoders has been widely used in the literature for this purpose, but this approach does not fully exploit the hierarchical nature of deep models. Instead, we propose to take advantage of the disentangled representations of data that are available in the latent space of autoencoders, by using the latent reconstruction error as machine health indicator. We have tested our proposal on three different datasets, considering two types of autoencoders (deep autoencoder and variational autoencoder), and comparing its performance with that of state-of-the-art approaches in terms of well-known quality metrics. The results of the research demonstrate the capability of our health indicator to outperform conventional approaches, in the three datasets, and regardless of the type of autoencoder used to generate the residuals. In addition, we provide some intuition on the suitability of latent spaces for the monitoring of machinery condition.
Keywords: Health indicator; Deep autoencoder; Latent space; Anomaly detection; Engineering systems (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832022001417
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:224:y:2022:i:c:s0951832022001417
DOI: 10.1016/j.ress.2022.108482
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().