EconPapers    
Economics at your fingertips  
 

Dynamic time warping using graph similarity guided symplectic geometry mode decomposition to detect bearing faults

Jianchun Guo, Zetian Si, Yi Liu, Jiahao Li, Yanting Li and Jiawei Xiang

Reliability Engineering and System Safety, 2022, vol. 224, issue C

Abstract: A bearing's health state is closely linked to the reliable operation of rotating machinery. In this context, dynamic time warping (DTW) is an excellent fault classifier due to its outstanding distance measurement ability. However, DTW alone cannot obtain acceptable results when it is employed to handle signals with a certain degree of noise. An enhancement of DTW based on graph similarity guided symplectic geometry mode decomposition (GS-SGMD) is presented in this paper to improve the performance of traditional DTW. To reduce the interference of random noise in raw signals, the signal is decomposed into multiple components by SGMD. Then, graph similarity is introduced to select the effective component as a test sample to be detected. In addition, the templates of known fault states of bearings are also obtained by GS-SGMD. Finally, DTW is employed to recognize the fault type of the test sample. Experimental results show that the presented method can effectively detect bearing faults with higher precisions in comparison to DTW and SGMD.

Keywords: Dynamic time warping; Symplectic geometry mode decomposition; Graph similarity; Bearing fault detection (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832022001879
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:224:y:2022:i:c:s0951832022001879

DOI: 10.1016/j.ress.2022.108533

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:224:y:2022:i:c:s0951832022001879