Intelligent fault identification of hydraulic pump using deep adaptive normalized CNN and synchrosqueezed wavelet transform
Shengnan Tang,
Yong Zhu and
Shouqi Yuan
Reliability Engineering and System Safety, 2022, vol. 224, issue C
Abstract:
Hydraulic piston pump is known as one of the most critical parts in a typical hydraulic transmission system. It is imperative to probe into an accurate fault diagnosis method to guarantee the stability and reliability of the system. Due to the shortcomings of traditional methods, the development of artificial intelligence enlightens the intensive exploration for machinery fault diagnosis. In this research, a normalized convolutional neural network (NCNN) framework with batch normalization strategy is developed for feature extraction and fault identification. First, the batch normalization technology is introduced in the modeling to resolve the change of data distribution. Second, inspired by the intelligent algorithms, Bayesian algorithm is employed to automatically tune the model hyperparameters. The improved model is named BNCNN. Third, BNCNN is used for fault diagnosis based on synchrosqueesed wavelet transform. The experiments in a hydraulic piston pump are employed for the demonstration of the method. Moreover, the superior performance of the proposed method is validated by the contrastive analysis. The results reveal that BNCNN can accurately and steadily complete the fault classification of hydraulic pump.
Keywords: Hydraulic pump; Intelligent fault diagnosis; Normalized CNN; Bayesian algorithm; Synchrosqueezed wavelet transform (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832022002083
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:224:y:2022:i:c:s0951832022002083
DOI: 10.1016/j.ress.2022.108560
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().