A data-driven roadmap for creep-fatigue reliability assessment and its implementation in low-pressure turbine disk at elevated temperatures
Run-Zi Wang,
Hang-Hang Gu,
Shun-Peng Zhu,
Kai-Shang Li,
Ji Wang,
Xiao-Wei Wang,
Miura Hideo,
Xian-Cheng Zhang and
Shan-Tung Tu
Reliability Engineering and System Safety, 2022, vol. 225, issue C
Abstract:
High-reliability life design process not only can ensure system safety in service, but also can provide scientific life management during the maintenance period. The objective of the present work is to develop a roadmap for creep-fatigue reliability assessment. Material-level data accumulations and theoretical foundations of creep-fatigue including creep-fatigue constitutive and multi-axial damage models are introduced. Afterwards, a low-pressure turbine disk under a typical creep-fatigue load waveform is applied as a case study to demonstrate how to perform creep-fatigue reliability assessment by using this roadmap in practice. Precise weakness hotspots are identified at the mortise joint of turbine disk. Based on hotspot-based strategy, it is found that the surrogate model assisted by an optimized machine learning method enhances significantly the computational efficiency. Accordingly, the probabilistic creep-fatigue life with considering multi-sources uncertainty obeys lognormal distributions. In the aspect of failure probability analysis, the current probabilistic damage interaction diagram method with creep-fatigue interaction gives conservative reliability assessments and excellent universality as compared to traditional ones mainly used in the low cycle fatigue field. Last but not least, joint failure evaluation of the turbine disk is discussed to comprehensively consider potential failure occurrence in an averaged hot region instead of a single hotspot.
Keywords: Creep-fatigue; Reliability assessment; Turbine disk; Surrogate model; Probabilistic safety design (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832022001788
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:225:y:2022:i:c:s0951832022001788
DOI: 10.1016/j.ress.2022.108523
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().