EconPapers    
Economics at your fingertips  
 

Computing Sobol indices in probabilistic graphical models

Rafael Ballester-Ripoll and Manuele Leonelli

Reliability Engineering and System Safety, 2022, vol. 225, issue C

Abstract: We show how to apply Sobol’s method of global sensitivity analysis to measure the influence exerted by a set of nodes’ evidence on a quantity of interest expressed by a Bayesian network. Our method exploits the network structure so as to transform the problem of Sobol index estimation into that of marginalization inference and, unlike Monte Carlo based estimators for variance-based sensitivity analysis, it gives exact results when exact inference is used. Moreover, the method supports the case of correlated inputs and it is efficient as long as eliminating the inputs’ ancestors is computationally affordable. The proposed algorithms are inspired by the field of tensor networks and generalize earlier tensor sensitivity techniques from the acyclic to the cyclic case. We demonstrate our method on three medium to large Bayesian networks in the areas of structural reliability and project risk management.

Keywords: Global sensitivity analysis; Bayesian networks; Sobol indices; Uncertainty quantification; Tensor networks (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832022002204
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:225:y:2022:i:c:s0951832022002204

DOI: 10.1016/j.ress.2022.108573

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:225:y:2022:i:c:s0951832022002204