EconPapers    
Economics at your fingertips  
 

Out-of-distribution detection-assisted trustworthy machinery fault diagnosis approach with uncertainty-aware deep ensembles

Te Han and Yan-Fu Li

Reliability Engineering and System Safety, 2022, vol. 226, issue C

Abstract: Recent intelligent fault diagnosis technologies can effectively identify the machinery health condition, while they are learnt based on a closed-world assumption, i.e., the training and testing data follow independently identically distribution (IID). However, in real-world diagnosis, the monitored samples are often from unknown distributions, such as unseen machine faults, leading to an out-of-distribution (OOD) problem. This is a challenging issue that may induce the model to produce unreliable and unsafe decision for unforeseen machine data. To tackle this problem, a novel OOD detection-assisted trustworthy machinery fault diagnosis approach is developed to enhance the reliability and safety of intelligent models. First, multiple deep neural networks are integrated to establish an ensemble diagnosis system, called deep ensembles. Then, the trustworthy analysis with uncertainty-aware deep ensembles is conducted to detect the OOD samples and issue the warnings for the potential untrustworthy diagnosis. A selection criterion of uncertainty threshold is given. Finally, the trustworthy decisions are achieved by comprehensively considering the deep ensembles’ prediction and uncertainty. The proposed trustworthy fault diagnosis approach is validated in two case studies, exhibiting significant advantages for diagnosing OOD samples.

Keywords: Trustworthy fault diagnosis; Out-of-distribution detection; Unseen fault; Ensemble deep learning; Uncertainty (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (31)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832022002836
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:226:y:2022:i:c:s0951832022002836

DOI: 10.1016/j.ress.2022.108648

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-31
Handle: RePEc:eee:reensy:v:226:y:2022:i:c:s0951832022002836