A predictive Markov decision process for optimizing inspection and maintenance strategies of partially observable multi-state systems
Chunhui Guo and
Zhenglin Liang
Reliability Engineering and System Safety, 2022, vol. 226, issue C
Abstract:
Optimizing both inspection and maintenance strategies for multi-state systems is challenging, especially when the inspected conditions contain uncertainties. One classic approach for addressing this issue is the Partially Observable Markov Decision Process (POMDP). However, the POMDP often considers the system is periodically inspected, resulting in a waste of inspection resources (cost and manpower) in the early stage of the system. To predictively optimize the inspection strategies, we formulate a new model-Predictive Markov Decision Process (PMDP). It extends the POMDP by embedding the Forward algorithm for inspection timing prediction and the Baum–Welch algorithm for model parameters estimation. Therefore, it could harvest the inspection information for predicting the successive inspection timing in an online updating scheme based on the new observation. In this manner, maintenance actions can take place at the predicted inspection timing that reduces unnecessary inspections. The PMDP manifests the power of predictive maintenance. As illustrated by the case study, the PMDP outperforms the POMDP under routine inspection by saving 26.3% of the cost on average.
Keywords: Multi-state system; Markov processes; Decision making; Inspection; Maintenance (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832022003167
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:226:y:2022:i:c:s0951832022003167
DOI: 10.1016/j.ress.2022.108683
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().