A machine learning method for the evaluation of ship grounding risk in real operational conditions
Mingyang Zhang,
Pentti Kujala and
Spyros Hirdaris
Reliability Engineering and System Safety, 2022, vol. 226, issue C
Abstract:
Ship groundings may often lead to damages resulting in oil spills or ship flooding and subsequent capsizing. Risks can be estimated qualitatively through experts’ judgment or quantitatively through the analysis of maritime traffic data. Yet, studies using big data remain limited. In this paper, we present a big data analytics method for the evaluation of grounding risk in real environmental conditions. The method makes use of big data streams from the Automatic Identification System (AIS), nowcast data, and the seafloor depth data from the General Bathymetric Chart of the Oceans (GEBCO). The evasive action of Ro-Pax passenger ships operating in shallow waters is idealized under various traffic patterns that link to side - or forward - grounding scenarios. Consequently, an Avoidance Behaviour-based Grounding Detection Model (ABGD-M) is introduced to identify potential grounding scenarios, and the grounding probabilistic risk is quantified at observation points along ship routes in various voyages. The method is applied on a Ro-Pax ship operating over 2.5 years ice-free period in the Gulf of Finland. Results indicate that grounding probabilistic risk estimation may be extremely diverse and depends on voyage routes, observation points, and operational conditions. It is concluded that the proposed method may assist with (1) better identification of critical grounding scenarios that are underestimated in existing accident databases; (2) improved understanding of grounding avoidance behaviours in real operational conditions; (3) the estimation of grounding probabilistic risk profile over the life cycle of fleet operations and (4) better evaluation of waterway complexity indices and ship operational vulnerability.
Keywords: Ship safety; Grounding risk; Big data analytics; Machine learning; Gulf of Finland (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832022003222
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:226:y:2022:i:c:s0951832022003222
DOI: 10.1016/j.ress.2022.108697
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().