Artificial-intelligence-based maintenance decision-making and optimization for multi-state component systems
Van-Thai Nguyen,
Phuc Do,
Alexandre Vosin and
Benoit Iung
Reliability Engineering and System Safety, 2022, vol. 228, issue C
Abstract:
Currently, in manufacturing, massive useful data about health condition and maintenance is often available thanks to Industry 4.0 technologies. However, how to take advantage of historical data to optimize maintenance policies for multi-component systems has still been a challenging problem. This is especially true when maintenance cost models at component level are not available and/or maintenance actions are imperfect. In order to cope with this issue, we propose in this paper an artificial-intelligence-based maintenance approach which first constructs a predictor based on artificial neural network (ANN) for estimating maintenance cost at system level and then employs a customized multi-agent deep reinforcement learning algorithm to optimize maintenance decisions that can be applied for large-scale systems. To evaluate the performance and scalability of the proposed maintenance approach, numerical studies are conducted on a small 4-component system with different configurations and a large system composed of 15 components considering both deterministic and random maintenance quality. The simulation results show that ANN-based predictor is efficient for maintenance cost forecasting and multi-agent deep reinforcement learning is a promising solution for maintenance decision-making and optimization.
Keywords: Deep reinforcement learning; Multi-agent systems; Maintenance decision-making; Multi-state component systems (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832022003805
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:228:y:2022:i:c:s0951832022003805
DOI: 10.1016/j.ress.2022.108757
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().