Ensemble of metamodels-assisted probability density evolution method for structural reliability analysis
Tong Zhou and
Yongbo Peng
Reliability Engineering and System Safety, 2022, vol. 228, issue C
Abstract:
An active-learning reliability method called the AEM-PDEM is proposed that combines adaptive ensemble of metamodels (EM) and the probability density evolution method (PDEM). Three critical aspects are addressed in this method. First, the ensemble of three diverse metamodels, i.e., the polynomial chaos Kriging (PCK), the low-rank approximation (LRA) and the support vector regression (SVR), is built by weighted combination according to their global error measures, which enables to provide both predicted value and variance. Second, the EM predictions at the training samples are replaced by the true computational model responses, so as to secure the accuracy of failure probability estimate. Third, according to the PDEM-oriented expected improvement function (PEIF), a multi-point enrichment process is developed based on the EM and the three component metamodels. Then, three numerical examples are investigated and comparisons are made between the AEM-PDEM and other existing reliability methods. Results demonstrate that, in comparison with the existing APCK-PDEM, the AEM-PDEM needs roughly 85-95% of the number of computational model evaluations. More importantly, it only requires approximately 30-45% of the number of iterations during the active-learning process. As a result, it just consumes nearly 35-50% of computational time of the APCK-PDEM, especially in high-dimensional dynamic problems and practical complex engineering problems.
Keywords: Ensemble of metamodels; Multi-point enrichment strategy; Probability density evolution method; Active-learning; PDEM-oriented expected improvement function; Reliability analysis (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S095183202200401X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:228:y:2022:i:c:s095183202200401x
DOI: 10.1016/j.ress.2022.108778
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().