A deep reinforcement learning approach for repair-based maintenance of multi-unit systems using proportional hazards model
Seyedvahid Najafi and
Chi-Guhn Lee
Reliability Engineering and System Safety, 2023, vol. 234, issue C
Abstract:
Condition-based maintenance (CBM) optimization may turn intractable when a complex system with multiple units becomes an asset of interest. This paper aims to find a CBM policy for a multi-unit series system subject to stochastic degradation, where a new inspection is scheduled based on age and condition monitoring data upon each inspection. The novelty of this study lies in proposing a modified deep reinforcement learning (DRL) algorithm for the semi-Markov decision processes (SMDP) to find an opportunistic CBM policy for a multi-unit system with economic dependency over an infinite horizon, where a range of repair actions are allowed under an aperiodic inspection scheme. We also suggested a novel environment simulator that considers the simultaneous impact of age and covariates using the proportional hazards (PH) model and the system's reliability characteristics. DRL acts as not only a learning algorithm obviating the full specification of the model but also an approximate scheme producing a solution in a limited computation. The proposed algorithm is applied to a multi-unit hydroelectric power system with the damage self-healing property to demonstrate the higher performance of the DRL algorithm in cost reduction than alternative policies and explain how enhancing system reliability reduces costs during the learning process.
Keywords: Condition-based maintenance; Deep reinforcement learning; Sequential decision making (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023000947
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:234:y:2023:i:c:s0951832023000947
DOI: 10.1016/j.ress.2023.109179
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().