EconPapers    
Economics at your fingertips  
 

Fast capacity prediction of lithium-ion batteries using aging mechanism-informed bidirectional long short-term memory network

Xiaodong Xu, Shengjin Tang, Xuebing Han, Languang Lu, Yu Wu, Chuanqiang Yu, Xiaoyan Sun, Jian Xie, Xuning Feng and Minggao Ouyang

Reliability Engineering and System Safety, 2023, vol. 234, issue C

Abstract: Accurate and robust capacity prediction is significant for battery management system to identify the state of health and life condition for lithium-ion batteries. This paper proposes a fast capacity prediction method by developing a novel deep aging mechanism-informed bidirectional long-short term memory (AM-Bi-LSTM) neural network. Firstly, a physical informed aging mechanism (AM) layer is established with the random charging curve sequences as input to identify the degradation features. Then the deep learning framework with two bidirectional long-short term memory (Bi-LSTM) layers is built to reflect the entire constant current charging curves and predict the battery capacity. In which, the battery aging mechanism is integrated into the artificial intelligence algorithm of capacity prediction for the first time. Several case studies are implemented to verify the effectiveness of developed method, and the influence of voltage window length on capacity prediction is further discussed. The results demonstrate that the charging curves can be accurately and fast captured with a capacity prediction root mean square error of less than 0.49% for 0.74 Ah batteries with 50 mV voltage window charging points collected in only less than 2.09 minutes mean cost time in the whole life cycle. It shows the proposed aging mechanism-informed data-driven prediction method has stronger robustness, faster prediction speed and higher accuracy compared with other data-driven methods.

Keywords: Lithium-ion battery; Charging curve; Fast capacity prediction; Deep learning; Aging mechanism-informed Bi-LSTM (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S095183202300100X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:234:y:2023:i:c:s095183202300100x

DOI: 10.1016/j.ress.2023.109185

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:234:y:2023:i:c:s095183202300100x