Maintenance optimization in industry 4.0
Luca Pinciroli,
Piero Baraldi and
Enrico Zio
Reliability Engineering and System Safety, 2023, vol. 234, issue C
Abstract:
This work reviews maintenance optimization from different and complementary points of view. Specifically, we systematically analyze the knowledge, information and data that can be exploited for maintenance optimization within the Industry 4.0 paradigm. Then, the possible objectives of the optimization are critically discussed, together with the maintenance features to be optimized, such as maintenance periods and degradation thresholds. The main challenges and trends of maintenance optimization are, then, highlighted and the need is identified for methods that do not require a-priori selection of a predefined maintenance strategy, are able to deal with large amounts of heterogeneous data collected from different sources, can properly treat all the uncertainties affecting the behavior of the systems and the environment, and can jointly consider multiple optimization objectives, including the emerging ones related to sustainability and resilience.
Keywords: Maintenance optimization; Industry 4.0; Knowledge information and data; Optimization approaches; Uncertain systems (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023001199
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:234:y:2023:i:c:s0951832023001199
DOI: 10.1016/j.ress.2023.109204
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().