A systematic method of remaining useful life estimation based on physics-informed graph neural networks with multisensor data
Yuxuan He,
Huai Su,
Enrico Zio,
Shiliang Peng,
Lin Fan,
Zhaoming Yang,
Zhe Yang and
Jinjun Zhang
Reliability Engineering and System Safety, 2023, vol. 237, issue C
Abstract:
Data-driven models, especially deep learning models, are proposed for remaining useful life (RUL) estimation with multisensor signals. Various treatments to reduce data sensitivity, addressing the difficulty of learning dynamic topologies, and coping with the lack of engineering physics guidance for model training limit the performance of these models and their use. This study proposes a systematic method to estimate RUL with multisensory data under dynamic operating conditions and multiple failure modes. Firstly, ARMA regression is introduced into the graph convolutional network(GCN) model. This allows the information loss in the GCN model following training to be lifted with low computational complexity. Secondly, the physics equations of balancing for economy and security in preventive maintenance policies is introduced in the loss function for training. This involves in a way to impose a higher penalty on delayed predictions, so to focus the neural network training on the control of high-risk situations. Finally, the method is validated on the popular C-MAPSS dataset. Compared with other cutting-edge methods, the proposed method can ensure high-fitting accuracy with strong security. In practice, the controllability and flexibility of deep learning models are enhanced, ensuring the reduction of high-risk, uncertain situations while sacrificing as little accuracy as possible.
Keywords: RUL estimation; Graph convolutional network; Multisensor data; Data preprocessing; Physics-informed machine learning (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023002478
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:237:y:2023:i:c:s0951832023002478
DOI: 10.1016/j.ress.2023.109333
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().