EconPapers    
Economics at your fingertips  
 

Inverse uncertainty quantification of a mechanical model of arterial tissue with surrogate modelling

Salome Kakhaia, Pavel Zun, Dongwei Ye and Valeria Krzhizhanovskaya

Reliability Engineering and System Safety, 2023, vol. 238, issue C

Abstract: Disorders of coronary arteries lead to severe health problems such as atherosclerosis, angina, heart attack and even death. Considering the clinical significance of coronary arteries, an efficient computational model is a vital step towards tissue engineering, enhancing the research of coronary diseases and developing medical treatment and interventional tools. In this work, we applied inverse uncertainty quantification to a microscale agent-based arterial tissue model, a component of a three-dimensional multiscale in-stent restenosis model. Inverse uncertainty quantification was performed to calibrate the arterial tissue model to achieve a mechanical response in line with tissue experimental data. Bayesian calibration with a bias term correction was applied to reduce the uncertainty of unknown polynomial coefficients of the attractive force function and achieve agreement with the mechanical behaviour of arterial tissue based on the uniaxial strain tests. Due to the high computational costs of the model, a surrogate model based on the Gaussian process was developed to ensure the feasibility of the computations.

Keywords: Inverse uncertainty quantification; Arterial tissue model; Surrogate modelling; Bayesian calibration; Material model of arterial tissue (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023003071
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:238:y:2023:i:c:s0951832023003071

DOI: 10.1016/j.ress.2023.109393

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:238:y:2023:i:c:s0951832023003071