EconPapers    
Economics at your fingertips  
 

A dynamic predictive maintenance approach using probabilistic deep learning for a fleet of multi-component systems

Junqi Zeng and Zhenglin Liang

Reliability Engineering and System Safety, 2023, vol. 238, issue C

Abstract: Empowered by the ubiquitous sensing infrastructure, predictive maintenance (PdM) has received increasing attention. However, designing predictive maintenance for multiple systems remains a challenging problem as it requires effective integration of the prediction and scheduling under uncertainty and constraints. This paper proposes a dynamic PdM approach for a fleet of multi-component systems, which integrates deep learning-based (DL-based) probabilistic remaining useful life (RUL) prognostics into maintenance planning. First, a DL-based framework is designed for obtaining predictive distributions of RULs, and a probabilistic gated recurrent unit model is proposed for time series data. The Gaussian distribution is used to model prediction uncertainties, and the negative log-likelihood loss is used for model training, which inclines to emphasize the late degradation period. Then, an integer program is established and embedded in a rolling horizon approach for maintenance optimization. The concept of wasted residual values is proposed to quantify the impact of early retirement of components on total costs, which enables customized group maintenance planning under different cost settings. The applicability of the overall approach is illustrated for a fleet of aircraft based on a practical dataset. The experimental results show that our approach can provide accurate RUL prognostics and schedule maintenance flexibly to reduce costs.

Keywords: Predictive maintenance; Remaining useful life; Deep learning; Maintenance planning; Fleet of multi-component systems (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023003708
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:238:y:2023:i:c:s0951832023003708

DOI: 10.1016/j.ress.2023.109456

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:238:y:2023:i:c:s0951832023003708