EconPapers    
Economics at your fingertips  
 

Degradation index construction and learning-based prognostics for stochastically deteriorating feedback control systems

Y. Gong, K.T. Huynh, Y. Langeron and A. Grall

Reliability Engineering and System Safety, 2023, vol. 238, issue C

Abstract: Degradation-based prognostics is crucial for the health management of technological systems. In this work, we are interested in the degradation index construction and remaining useful life prognostics for stochastically deteriorating feedback control systems. The main challenges reside in the lack of knowledge about the system structure and the latent internal damage, as well as in the fault tolerance nature of feedback control systems. Our solution is to consider the whole system as a black-box, and use its easy-to-observe reference input/time response output to estimate the system transfer function. The associated H∞ norm, also called maximum energy gain, is defined as a system degradation index. Since the system fault tolerance does not allow to efficiently model the index evolution by common stochastic processes, traditional prognostics based on degradation processes are no longer applicable. To remedy, we propose to fit the system remaining useful life population to the versatile Birnbaum–Saunders distribution, and adopt a segmenting piecewise polynomials algorithm to learn the mapping between the distribution parameters and degradation index from degradation and failure data of similar systems. By this way, the remaining useful life distribution of deteriorating feedback control systems can be predicted in real-time given the system input/output at an inspection time. We numerically experiment our method on a stabilization loop control device driven by proportional–integral–differential controller in an inertial platform. Numerous sensitivity results under various configurations of system characteristics and training data corroborate the outperformance of proposed degradation index and the learning-based prognostics method.

Keywords: Birnbaum–Saunders distribution; Degradation index; Feedback control system; Hidden damage; Learning-based prognostics; Remaining useful life (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023003745
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:238:y:2023:i:c:s0951832023003745

DOI: 10.1016/j.ress.2023.109460

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:238:y:2023:i:c:s0951832023003745