EconPapers    
Economics at your fingertips  
 

Life-cycle modeling driven by coupling competition degradation for remaining useful life prediction

Yasong Li, Zheng Zhou, Chuang Sun, Jun Peng, Asoke K. Nandi and Ruqiang Yan

Reliability Engineering and System Safety, 2023, vol. 238, issue C

Abstract: Estimating latent degradation states of mechanical systems from observation data provide the basis for their prognostic and health management (PHM). Recently, deep learning models have been employed to extract latent degradation features from observation signals. However, most of the existing methods using DL in PHM ignore the temporal causal dependencies throughout the entire life-cycle degradation process due to the slice training manner. To address this issue, this work proposes a novel state space model (SSM) named Coupling Competition Degradation based Deep Markov Model (C2D2M2). C2D2M2 utilizes deep neural networks to parameterize emission function and transition function in SSM, enhancing the latent feature representations. To describe the strong nonlinear degradation process of mechanical systems, coupling competition degradation mechanism (CCDM) is embedded into the transition function as prior degradation assumption. Specifically, we establish the transition equations according to three degradation mechanisms (linear, power rate, exponential degradation) and employ attention mechanism to realize competition among them. To predict remaining useful life (RUL), degradation indicator (DI) is estimated from the latent degradation state and two similarity-instance based learning (SBL) frameworks are designed for bearings and turbofan engines. Experimental results demonstrate that SBL frameworks based on C2D2M2 obtain excellent prognostic performance and attention heat map interprets competition process of three degradation mechanisms.

Keywords: Remaining useful life (RUL) estimation; Coupling competition degradation mechanism (CCDM); Deep Markov model (DMM); Life-cycle modeling; Degradation indictor (DI) (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023003940
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:238:y:2023:i:c:s0951832023003940

DOI: 10.1016/j.ress.2023.109480

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:238:y:2023:i:c:s0951832023003940