Adaptive ensemble gaussian process regression-driven degradation prognosis with applications to bearing degradation
WanJun Hou and
Yizhen Peng
Reliability Engineering and System Safety, 2023, vol. 239, issue C
Abstract:
Degradation modeling and remaining useful life prediction of bearings is crucial for predictive maintenance of rotating machinery. However, the contradiction between limited full-life cycle samples and dynamically diverse degradation trends has become the main obstacle for degradation modeling and prediction. To address these challenges, this paper proposes an adaptive time-varying ensemble Gaussian process regression-driven degradation prediction method. Firstly, four different base predictors (i.e., global predictor, healthy stage predictor, impending degradation stage predictor and degradation stage predictor) are constructed based on Gaussian regression process to reflect the characteristics of different degradation stages. On this basis, a time-varying ensemble learning method with adaptive weights is proposed, and a corresponding adaptive ensemble Gaussian regression process is constructed to model the full-life degradation process. The model can effectively enhance the flexibility and prediction accuracy of the single-time invariant Gaussian regression model. Some real bearing degradation cases are used to validate the proposed method.
Keywords: Bearing degradation; Gaussian process regression; Bagging method; adaptive weight updating (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023003939
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:239:y:2023:i:c:s0951832023003939
DOI: 10.1016/j.ress.2023.109479
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().