EconPapers    
Economics at your fingertips  
 

Surrogate-modeling-assisted creep-fatigue reliability assessment in a low-pressure turbine disc considering multi-source uncertainty

Run-Zi Wang, Hang-Hang Gu, Yu Liu, Hideo Miura, Xian-Cheng Zhang and Shan-Tung Tu

Reliability Engineering and System Safety, 2023, vol. 240, issue C

Abstract: This paper proposes a surrogate modeling approach based on XGboost machine learning technique, in order to establish a data-driven mapping relationship between input and output abstracted from practical finite element analysis (FEA) results. It facilitates novel insights into an efficient application of creep-fatigue reliability assessment in low-pressure turbine disk without a large amount of high-fidelity FEA cases. In detail, a general technical route is proposed for the probabilistic estimations of creep-fatigue lifetimes, where the multi-source uncertainties in the sequenced levels are synchronously considered. Subjected to typical creep-fatigue load spectrum, precise weakness hotspot is identified at the 1st bottom fir-tree groove of the turbine disk. Based on hotspot-based strategy, it is found that XGboost-involved surrogate modeling approach significantly improves the computational efficiency. The common results show that logarithmic creep-fatigue lifetimes roughly obey the normal distributions with the present of uncertainty sources, regardless of the multi-source combinations. Specifically, geometric tolerance plays an important role in reliability assessment results, which not only makes conservative gap but also shows high sensitivity in the reliability assessments.

Keywords: Surrogate modeling approach; Reliability analysis; Low-pressure turbine disc; Multi-source uncertainty; Geometric tolerance (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023004647
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:240:y:2023:i:c:s0951832023004647

DOI: 10.1016/j.ress.2023.109550

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:240:y:2023:i:c:s0951832023004647