Adaptive machine learning with physics-based simulations for mean time to failure prediction of engineering systems
Hao Wu,
Yanwen Xu,
Zheng Liu,
Yumeng Li and
Pingfeng Wang
Reliability Engineering and System Safety, 2023, vol. 240, issue C
Abstract:
The Mean Time to Failure (MTTF) is a critical metric for assessing the reliability of non-repairable systems, and it plays a significant role in incident management. However, accurately estimating MTTF can be challenging due to the expensive physics-based simulation models. To address this challenge, this paper proposes an adaptive surrogate modeling method that approximates the failure modes in simulation model with a computationally efficient model to predict the MTTF during the design stage. Firstly, the proposed method initially trains Gaussian process (GP) surrogate models for the failure modes. Then, the composite expected feasibility function is proposed to identify the new information, such as input variables, time instances, and component index, to refine the surrogate models. In the end, the MTTF can be calculated by taking the expected value of the system’s first time to failure with the available GP models. The proposed method has the capability of forecasting MTTF for series systems, parallel systems, and mixed systems. To showcase its efficacy, we provide a mathematic and two physics-based simulation examples, which demonstrate the adaptive surrogate modeling method can accurately predict the MTTF of the system in physics-based simulation model.
Keywords: Mean time to failure; Systems; Adaptive machine learning model; Physics-based simulation (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023004672
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:240:y:2023:i:c:s0951832023004672
DOI: 10.1016/j.ress.2023.109553
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().