EconPapers    
Economics at your fingertips  
 

Optimal sensor placement for permanent magnet synchronous motor condition monitoring using a digital twin-assisted fault diagnosis approach

Sara Kohtz, Junhan Zhao, Anabel Renteria, Anand Lalwani, Yanwen Xu, Xiaolong Zhang, Kiruba Sivasubramaniam Haran, Debbie Senesky and Pingfeng Wang

Reliability Engineering and System Safety, 2024, vol. 242, issue C

Abstract: Efficient health monitoring for identifying and quantifying damages can substantially improve the performance and structural integrity of engineered systems. Specifically, new advances in sensing technologies have pushed the research of large sensor networks to monitor complex mechanical structures. Given the need for health state monitoring, designing an optimal sensor framework with accurate detectability of failure modes has great significance. However, there is often little to no experimental data available for newly proposed mechanical systems; so a digital-twin method would make fault detection feasible for this applications. In this paper, a data-driven reliability-based design optimization (RBDO) approach is employed for sensor placement and fault detection of a permanent magnet synchronous motor (PMSM), which is a relatively new system for high power engineering applications. This system suffers from inter-turn and inter-phase short-winding faults, which can cause catastrophic failure of the whole structure. For PMSMs, current sensing and magnetic field sensing can be utilized for the detection of faults, but actual sensor placement has not been considered in recent literature. In this study, the first step is to create an FEA model of the PMSM for the simulation of faults, which serves as the digital twin. Next, a data-driven approach is implemented for sensor placement and classification of faults. The proposed method utilizes distance clustering for identification of various failure modes, which is suitable for many applications due to its high accuracy and computational efficiency. In addition, a genetic algorithm is implemented to determine the minimum number and optimal placement of sensors. This framework simultaneously searches for the optimal placement of sensors while training the classifier for detectability of system health states. Ultimately, the proposed methodology shows convergence to a solution with high accuracy for detection of faults, and is demonstrated on the novel system of a PMSM with magnetic field sensors.

Keywords: Optimal sensor placement; Fault detection; Classification; Genetic algorithm; Hall effect sensor; Permanent magnet synchronous motor (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023006282
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023006282

DOI: 10.1016/j.ress.2023.109714

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023006282