EconPapers    
Economics at your fingertips  
 

Uncertainty quantification in low-probability response estimation using sliced inverse regression and polynomial chaos expansion

Phong T.T. Nguyen and Lance Manuel

Reliability Engineering and System Safety, 2024, vol. 242, issue C

Abstract: For wave energy converters (WECs), wind turbines, etc., estimation of response extremes over a selected exposure time is important during design. Sources of uncertainty arising from background slowly-varying environmental conditions and from shorter time-scale fluctuations in ocean winds, turbulence, etc. must all be considered. Together, these different sources can comprise a high-dimensional vector of stochastic variables (often on the order of hundreds or thousands). To accurately propagate the influence of these uncertainty sources to model outputs, conventional surrogate model building approaches such as polynomial chaos expansion (PCE), stochastic collocation, low-rank tensor approximations, etc. must consider dimension reduction. We explore the use of sliced inverse regression (SIR) combined with polynomial chaos expansion. SIR first reduces the original high-dimensional problem to a low-dimensional one; then, an optimal polynomial PCE model is proposed and applied on “effective†components in the low-dimensional space. SIR-PCE can mitigate the curse of dimensionality. It is employed here in the prediction of the long-term extreme response of offshore structures; it is demonstrated using classical benchmark analytical functions as well as offshore applications including extreme waves and the response of a wave energy converter. Efficiency and accuracy gains over Monte Carlo simulation and other methods in literature are found.

Keywords: Sliced inverse regression; Polynomial chaos expansion; Surrogate models; Stochastic process; Long-term extreme loads; Wave energy converters (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023006646
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023006646

DOI: 10.1016/j.ress.2023.109750

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023006646