Optimal tasks assignment policy in multi-task multi-attempt missions
Gregory Levitin,
Liudong Xing and
Yuanshun Dai
Reliability Engineering and System Safety, 2024, vol. 243, issue C
Abstract:
Motivated by real-world applications like unmanned reconnaissance aerial vehicles, this paper considers a multi-task multi-attempt mission system, where each task may be attempted multiple times and each attempt may be performed simultaneously by multiple components to enhance the task completion probability. Such an active redundancy, on the other hand, incurs high cost and high risk associated with the failures of the components. To balance the reward and the risk, this paper formulates and solves a new optimization problem, which determines the number of components performing each uncompleted task in each attempt, referred to as the task assignment policy (TAP), minimizing the expected mission cost (EMC). A recursive algorithm is proposed to evaluate the EMC (aggregating the expected operational cost, cost of lost components, and cost associated with uncompleted tasks) for the considered multi-task multi-attempt system under a given TAP. Based on the suggested EMC evaluation algorithm, the genetic algorithm is implemented to solve the optimal TAP problem. A detailed case study of an unmanned reconnaissance aerial vehicle system performing five independent surveillance tasks is conducted to examine the impacts of several model parameters on the EMC, task successful completion probabilities, and the optimal TAP solutions.
Keywords: Multi-task mission; Multiple attempts; Expected mission cost; Lost components; Operation cost; Task completion probability (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S095183202300769X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:243:y:2024:i:c:s095183202300769x
DOI: 10.1016/j.ress.2023.109855
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().