Dynamic pruning-based Bayesian support vector regression for reliability analysis
Shui Yu,
Yuyao Ren,
Xiao Wu,
Peng Guo and
Yun Li
Reliability Engineering and System Safety, 2024, vol. 244, issue C
Abstract:
Adaptive surrogate-based reliability analysis methods have garnered significant attention due to their potential to enhance computational efficiency in accurately estimating failure probability. However, the candidate sample pool remains constant for most surrogate-based reliability methods, and traversing the candidate sample pool one by one will reduce the efficiency of surrogate modeling. More importantly, maintaining a static sample pool may lead to the inclusion of samples that contribute minimally to the construction of the surrogate modeling, thereby impacting the accuracy and efficiency of the reliability analysis. Accordingly, this paper leverages the robust performance of Bayesian support vector regression to propose a dynamic pruning strategy for the candidate sample pool to estimate failure probability efficiently. A dynamic pruning strategy is presented to streamline the process further, iteratively reducing the candidate sample pool. An adaptive learning algorithm is then introduced, integrating the U function and the sparsity of training samples. This is complemented by a formulated convergence condition, contributing to an ideal surrogate model. The proposed approaches showcase superior efficiency and accuracy through illustrations using well-known benchmark problems and complex reliability analysis problems involving small failure probability and high-dimensional limit state function.
Keywords: Reliability analysis; Bayesian support vector regression; Adaptive learning algorithm; Dynamic pruning strategy (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023008360
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:244:y:2024:i:c:s0951832023008360
DOI: 10.1016/j.ress.2023.109922
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().