RUL prediction for two-phase degrading systems considering physical damage observations
Xiao Cai,
Naipeng Li and
Min Xie
Reliability Engineering and System Safety, 2024, vol. 244, issue C
Abstract:
This paper focuses on a specific type of two-phase degrading system commonly encountered in industrial practice. The first phase is moderate with a low degradation rate while the second is rapid with a high rate. Current studies usually rely solely on sensor measurements to divide phases and predict the remaining useful life (RUL), ignoring the utilization of actual physical damage observations, such as wear depth and crack length. These observations, available during system shutdown periods, directly reflect system states and phase changes. To this end, we propose a novel RUL prediction framework consisting of offline training and online prediction processes. In the offline training process, the physical damage observations and sensor measurements are utilized to estimate the parameters of a two-phase Wiener process and a bijective function matrix. In the online prediction process, real-time sensor measurements are transformed into virtual damage observations for RUL prediction. To enhance the accuracy of phase change point detection, a change point detection algorithm is proposed for both processes. The effectiveness is demonstrated using a simulation and a real case study.
Keywords: Multi-source information; Two-phase Wiener process; Degradation model with change point; Remaining useful life (RUL) prediction (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832024000012
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:244:y:2024:i:c:s0951832024000012
DOI: 10.1016/j.ress.2024.109926
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().