Joint optimization of loading, mission abort and rescue site selection policies for UAV
Xian Zhao,
Xinlei Wang,
Ying Dai and
Qingan Qiu
Reliability Engineering and System Safety, 2024, vol. 244, issue C
Abstract:
Unmanned Aerial Vehicles (UAVs) have increasingly played a significant role in transportation activities, while the security challenges posed by UAVs are becoming more prominent. This paper explores a joint optimization problem involving loading, mission abort, and rescue site selection policies to meet random cargo demand while minimizing the total cost associated with cargo damage and UAV failures. When the condition of the UAV deteriorates beyond a certain threshold, the transportation mission can be aborted, thereby reducing the risk of failure. Subsequently, the UAV is required to proceed to the nearest rescue sites for assistance. The duration of the rescue depends on the distance between the rescue site and the UAV's position at the time of mission abort. Given that the probability of UAV failure during the rescue procedure increases with the rescue duration, the strategic selection of rescue sites becomes crucial in enhancing UAV survivability. Optimization models are subsequently developed to determine the optimal loading level, abort threshold, and distribution of rescue sites, with the objectives of maximizing system survivability and minimizing expected costs. Finally, a case study is conducted to illustrate the substantial impact of the proposed policies on enhancing UAV survivability and reducing operational costs.
Keywords: Mission abort; Rescue site selection; Loading; Unmanned aerial vehicle; System survivability (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832024000309
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:244:y:2024:i:c:s0951832024000309
DOI: 10.1016/j.ress.2024.109955
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().