Reliability improvement of the dredging perception system: A sensor fault-tolerant strategy
Bin Wang,
Enrico Zio,
Xiuhan Chen,
Hanhua Zhu,
Yunhua Guo and
Shidong Fan
Reliability Engineering and System Safety, 2024, vol. 247, issue C
Abstract:
In the dredging industry, the automation and accuracy of the Dredging Perception System (DPS) are vital for operational efficiency and environmental safety. Current DPS implementations face challenges with sensor fault tolerance, leading to system unreliability and increased false alarm rates that can disrupt dredging operations. We propose a Hybrid Redundancy Sensor Fault Tolerance (HRSFT) strategy that integrates matching physical sensors (PS) with two distinct types of virtual sensors (VS) driven by multi-sensor association and time-series prediction models. The HRSFT employs a voting-cold storage strategy to address the false alarm issues commonly associated with single virtual sensor systems. Through experimental validation, the HRSFT strategy has demonstrated its capability to provide accurate replacement information during both single and multi-sensor failure scenarios, effectively managing abnormal sensor data and enhancing the operational reliability of the DPS. The implementation of the HRSFT strategy significantly improves the accuracy and stability of the DPS, suggesting a substantial advancement in sensor fault tolerance that could be applied to similar systems in various industries, leading to safer and more reliable operations.
Keywords: Fault tolerant (FT); Reliability; Sensor-fault detection, Isolation and accommodation (SFDIA); Data fusion; Cutter suction dredger (CSD); Dredging perception system (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832024002084
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:247:y:2024:i:c:s0951832024002084
DOI: 10.1016/j.ress.2024.110134
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().