A Bayesian adversarial probsparse Transformer model for long-term remaining useful life prediction
Yongbo Cheng,
Junheng Qv,
Ke Feng and
Te Han
Reliability Engineering and System Safety, 2024, vol. 248, issue C
Abstract:
Long-term remaining useful life (RUL) prediction is essential for the maintenance of safety-crucial engineering assets. Deep learning (DL) models, especially Transformer-based models have achieved outstanding performance in long-term RUL prediction. However, existing Transformer models neglect the impact of discrepancy loss in model training. The accumulation of the discrepancy loss during the inference will hamper the generalization of prediction model, resulting in an overfitting problem. To address the problem, this paper proposes a Bayesian Adversarial Probsparse Transformer (BAPT) model for long-term RUL prediction. Firstly, the adversarial learning method is leveraged to mitigate the impact of accumulated discrepancy loss caused by varying working conditions in long-term prediction, thus diminishing the error accumulation. Secondly, the Probsparse multi-head attention is adopted to enhance the efficiency of feature extraction. The Probsparse multi-head attention focuses on the significant degradation features in long time-series to reduce the computation complexity. Lastly, the Bayesian neural network is introduced to quantify the uncertainty in RUL prediction. The effectiveness of the proposed model is verified using two commercial aircraft turbofan engine datasets. The results indicate that BAPT model for long-term RUL prediction demonstrates better performance than the existing state-of-the-art models.
Keywords: Remaining useful life; Long time-series; Distribution discrepancy; Transformer; Bayesian deep-learning; Adversarial learning (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832024002618
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:248:y:2024:i:c:s0951832024002618
DOI: 10.1016/j.ress.2024.110188
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().