EconPapers    
Economics at your fingertips  
 

Incorporation of a global perspective into data-driven analysis of maritime collision accident risk

Huanhuan Li, Çelik, Cihad, Musa Bashir, Lu Zou and Zaili Yang

Reliability Engineering and System Safety, 2024, vol. 249, issue C

Abstract: Ship collision accidents are one of the most frequent accident types in global maritime transportation. Nevertheless, conducting an in-depth analysis of collision prevention poses a formidable challenge due to the constraints of limited Risk Influential Factors (RIFs) and available datasets. This paper aims to incorporate a global perspective into a new data-driven risk model, scrutinize the root causes of collision accidents, and advance measures for their mitigation. Additionally, it seeks to analyze the spatial distribution and conduct a comprehensive comparative study on collision characteristics for both pre- and post-COVID-19, utilizing the real accident dataset collected from two reputable organizations: Global Integrated Shipping Information System (GISIS) and Lloyd's Register Fairplay (LRF). The research findings and implications encompass several crucial aspects: 1) the constructed model demonstrates its reliability and accuracy in predicting collision accidents, as evident from its prediction performance and various scenario analysis; 2) the most hazardous voyage segment for collision accidents is identified to provide valuable guidance to different stakeholders; and 3) the hierarchical significance of various ship types in the context of collision accident is highlighted regarding the most probable scenario for collision occurrences; 4) During the pandemic, the rise in collision probabilities, particularly involving older vessels and bulk carriers, implies heightened operational challenges or maintenance issues for these ship types; (5) The prominence of favorable and adverse sea conditions in collision reports underscores the significant influence of weather on accidents during the pandemic. These findings and implications help enhance safety protocols, ultimately reducing the frequency of collision accidents in the global maritime domain.

Keywords: Maritime safety; Global maritime transportation; Maritime collision accidents; Bayesian network (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832024002606
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:249:y:2024:i:c:s0951832024002606

DOI: 10.1016/j.ress.2024.110187

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:249:y:2024:i:c:s0951832024002606