Addressing class-imbalanced learning in real-time aero-engine gas-path fault diagnosis via feature filtering and mapping
Zengbu Liao,
Keyi Zhan,
Hang Zhao,
Yuntao Deng,
Jia Geng,
Xuefeng Chen and
Zhiping Song
Reliability Engineering and System Safety, 2024, vol. 249, issue C
Abstract:
Condition-based maintenance of aero-engines requires real-time gas-path fault diagnosis, which is crucial for reducing costs and enhancing aircraft attendance. It is imperative to ensure a low false alarm rate in fault diagnosis algorithms. Inherent variations between engines and age-related performance deterioration can lead to an increase in false alarms, necessitating online algorithm tuning. However, insufficient fault data in online tuning may lead to class imbalance and algorithmic forgetfulness of fault features, compromising effectiveness. To tackle this issue, this paper introduces a novel hybrid diagnosis algorithm that utilizes feature filtering and mapping. This method entails an engine model, a feature extractor, a feature filter, a fault classifier, and several feature mappers. The feature mappers are designed to generate fault features based on the incoming fault free data for rebalancing the tuning dataset. And the feature filter is introduced to prevent weight collapse during the online tuning. Validation through a 400-hour life cycle simulation test and a real data test indicate that the method outperforms the benchmark methods. It overcomes the class-imbalanced learning problem, showcasing its potential for aero-engine gas-path fault diagnosis.
Keywords: Aero-engine; Gas-path fault diagnosis; Online tuning; Class-imbalanced learning (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S095183202400262X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:249:y:2024:i:c:s095183202400262x
DOI: 10.1016/j.ress.2024.110189
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().