A nonparametric degradation modeling method for remaining useful life prediction with fragment data
Naipeng Li,
Mingyang Wang,
Yaguo Lei,
Xiaosheng Si,
Bin Yang and
Xiang Li
Reliability Engineering and System Safety, 2024, vol. 249, issue C
Abstract:
Condition-based maintenance (CBM) is an effective way to keep the safety of industrial equipment by predicting the remaining useful life (RUL) and scheduling the maintenance plan before failure. Condition monitoring data is the basis of health state evaluation and RUL prediction. In ideal cases, the monitoring data are collected consecutively starting from the healthy stage until the end of the lifetime. In real industrial cases, however, fragment data often exist due to the interruption of monitoring and/or the loss of sensor readings. The major characteristic of fragment data is that they only record a random period of degradation process. The initial degradation time information is generally lost. Therefore, it is unable to be modeled using the common time-dependent modeling framework. To deal with the above issue, this paper proposes a nonparametric degradation modeling method for RUL prediction with fragment data. In this method, a new state-dependent degradation modeling framework is constructed via two-step axis transform. It formulates the RUL using a function depending on the health state. Based on functional principle component analysis (FPCA), a principal analysis via maximum likelihood estimation (PAMLE) algorithm is developed to recover the missing data of failed units. In addition, a RUL prediction-oriented optimization (POO) algorithm is proposed to predict the RUL of in-service units based on a piece of fragment data. Consequently, the proposed method is capable of dealing with the issues of both data recovery and RUL prediction. The effectiveness of the method is demonstrated using a fatigue crack growth dataset and a lithium-ion (Li-ion) battery degradation dataset.
Keywords: Remaining useful life prediction; Nonparametric degradation model; Fragment data recovery; Functional principal component analysis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832024002977
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:249:y:2024:i:c:s0951832024002977
DOI: 10.1016/j.ress.2024.110224
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().