A novel data augmentation strategy for aeroengine multitask prognosis based on degradation behavior extrapolation and diversity-usability trade-off
Xiao Yan Li,
De Jun Cheng,
Xi Feng Fang,
Chun Yan Zhang and
Yu Feng Wang
Reliability Engineering and System Safety, 2024, vol. 249, issue C
Abstract:
For aeroengine multitask prognosis, dataset's quantity and quality significantly affect the prediction performance. Due to the insufficiency and high redundancy of collected data, data augmentation techniques are widely utilized in industrial scenarios. However, traditional methods struggle to balance the degradation behavior diversity along with the usability of generated data. To tackle these challenges, this study proposes a novel data augmentation framework for aeroengine multitask prognosis. A novel First Predicting Time (FPT) identification method is proposed to identify the degradation starting point through Health Indictor (HI) volatility. Then, an optimal data augmentation strategy is designed based on Dual Discriminator Time-series Generative Adversarial Network (DDTGAN) and Negative Sample Elimination (NSE), which can enrich samples by extrapolating degradation behavior with multi-scale temporal features, and eliminating unqualified samples to obtain optimal generated samples through diversity-usability trade-off. Based on these, an adaptive Transformer-Multi-gate Mixture-Of-Experts (T-MMOE) multitask prognosis model with gradient normalization is constructed to predict Remaining Useful Life (RUL) and diagnose faults simultaneously with dynamic weights trade-off between two tasks. The proposed framework was compared with other models through the C-MAPSS dataset. Comparison results manifest that the proposed framework is not only able to generate realistic high-quality time-series data but also outperforms the other prognosis models.
Keywords: Data augmentation strategy; Multitask prognosis; Multi-scale temporal feature; Diversity-usability trade-off; Negative sample elimination (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832024003119
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:249:y:2024:i:c:s0951832024003119
DOI: 10.1016/j.ress.2024.110238
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().