Condition monitoring based on corrupted multiple time series with common trends
Yujie Wei,
Ershun Pan and
Zhi-Sheng Ye
Reliability Engineering and System Safety, 2024, vol. 251, issue C
Abstract:
Condition monitoring is a fundamental task in the reliability engineering and operation management of a complex industrial system. It aims to detect faults based on sensing data but poses significant challenges when dealing with corrupted multiple time series data in many real-world applications. These time series typically exhibit similar changing patterns influenced by common trends (e.g., workload, ambient condition) and physical relationships among corresponding variables, and are often significantly corrupted large outliers (e.g., transmission interruption). Although several traditional common trend models have been employed to analyze such condition monitoring data in the literature, they are fully parametric, constrained by restrictive assumptions, and not robust to outliers. In this article, we propose a novel semiparametric decomposition model to analyze a set of monitored time series and separate it into common, idiosyncratic, and sparse components, under relatively mild assumptions. We also introduce effective algorithms for model estimation and a monitoring scheme for fault detection. The numerical and real case studies demonstrate the superiority of the proposed method over existing approaches, in terms of both decomposition accuracy and detection performance for system faults.
Keywords: Condition monitoring; Statistical process control; Multiple time series; Sparse outliers; Factor model; Convex optimization (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S095183202400396X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:251:y:2024:i:c:s095183202400396x
DOI: 10.1016/j.ress.2024.110324
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().