Digital twin Bayesian entropy framework for corrosion fatigue life prediction and calibration of bridge suspender
Yu He,
Yafei Ma,
Ke Huang,
Lei Wang and
Jianren Zhang
Reliability Engineering and System Safety, 2024, vol. 252, issue C
Abstract:
This paper proposes an intelligent digital twin framework for corrosion fatigue life prediction and calibration of suspender wires integrated with mechanism-driven, sensor-driven, and information fusion. A general probabilistic information fusion strategy is constructed to handle entropy-based external constraints and classical Bayesian updating. Statistical moment, range bound, and point data are considered to investigate the effect of various types and sequences of information. A small-time domain fatigue crack growth model is proposed to overcome the limitations of traditional cycle-based methods, which can capture the large and small cycles of random fatigue stress. The virtual sensor-based stress time-history response is obtained under different traffic flow densities through digital twin finite element model of a suspension bridge. The results show that with and without considering interval bound leads to different fatigue life prediction results, especially for statistical moment data fusion, and the maximum difference is approximately 54%. The average prediction life of suspender wires is gradually close to the actual service life as crack observations increase. The standard deviations of the corrosion fatigue life decrease by 88%, when simultaneously integrating moment, interval, and point data.
Keywords: Suspender wires; Corrosion fatigue; Multi-source data; Hybrid uncertainty; Bayesian entropy (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832024005283
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:252:y:2024:i:c:s0951832024005283
DOI: 10.1016/j.ress.2024.110456
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().