EconPapers    
Economics at your fingertips  
 

A reinforcement learning agent for maintenance of deteriorating systems with increasingly imperfect repairs

Pliego Marugán, Alberto, Pinar-Pérez, Jesús M. and García Márquez, Fausto Pedro

Reliability Engineering and System Safety, 2024, vol. 252, issue C

Abstract: Efficient maintenance has always been essential for the successful application of engineering systems. However, the challenges to be overcome in the implementation of Industry 4.0 necessitate new paradigms of maintenance optimization. Machine learning techniques are becoming increasingly used in engineering and maintenance, with reinforcement learning being one of the most promising. In this paper, we propose a gamma degradation process together with a novel maintenance model in which repairs are increasingly imperfect, i.e., the beneficial effect of system repairs decreases as more repairs are performed, reflecting the degradational behavior of real-world systems. To generate maintenance policies for this system, we developed a reinforcement-learning-based agent using a Double Deep Q-Network architecture. This agent presents two important advantages: it works without a predefined preventive threshold, and it can operate in a continuous degradation state space. Our agent learns to behave in different scenarios, showing great flexibility. In addition, we performed an analysis of how changes in the main parameters of the environment affect the maintenance policy proposed by the agent. The proposed approach is demonstrated to be appropriate and to significatively improve long-run cost as compared with other common maintenance strategies.

Keywords: Maintenance management; Reinforcement learning; Gamma deterioration process (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832024005386
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:252:y:2024:i:c:s0951832024005386

DOI: 10.1016/j.ress.2024.110466

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:252:y:2024:i:c:s0951832024005386