Remaining useful life prediction of lithium-ion batteries based on autoregression with exogenous variables model
Zhelin Huang and
Zhihua Ma
Reliability Engineering and System Safety, 2024, vol. 252, issue C
Abstract:
The gradual decrease capacity serves as a pivotal health indicator, reflecting the condition of lithium-ion batteries. Accurate forecasting of capacity can ascertain the remaining lifespan of these batteries at any given cycle, which is crucial for managing batteries in electric vehicles. This paper proposes an Autoregression with Exogenous Variables (AREV) model, which continually updates itself through a sliding window, offering predictions of battery state of health and remaining useful life, which extends battery prognostics at a fixed operating condition to different operating conditions. In addition, unlike most models that require multiple battery data of the same type for training, the proposed model only requires the use of fragmented data of the target battery with length around 30-50 cycles for capacity prediction and determines battery life based on battery failure thresholds. The above two points enable this model to be updated online without the need for any offline training. Finally, four different types of battery dataset , with different chemical substances and different charge and discharge conditions (especially dataset that follows random walk discharging profile to stimulate the real power consumption process) , are applied to verify the effectiveness and robustness of proposed RUL prediction approach. It shows that the proposed model can accurately predicting future capacity values. Timely warning signals can be issued before the end of life of battery, thereby ensuring the safe driving of electric vehicles and timely battery replacement.
Keywords: Lithium-ion battery; Autoregression with exogenous variables model; Feature extraction; Remaining useful life prediction (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S095183202400557X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:252:y:2024:i:c:s095183202400557x
DOI: 10.1016/j.ress.2024.110485
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().