A hybrid dual-frequency-informed spider net for RUL prognosis with adaptive IDP detection and outlier correction
Qichao Yang,
Baoping Tang,
Lei Deng,
Xiaolong Zhang and
Jinzhou Wu
Reliability Engineering and System Safety, 2025, vol. 253, issue C
Abstract:
The present study proposes a novel framework to estimate the Remaining Useful Life (RUL) of bearings operating under variable operating conditions, addressing two critical challenges: early detection of the Initial Degradation Point (IDP) in bearings and correction of outlier values. A unique Spider cell prediction unit with dual-frequency correction is proposed. Firstly, a generalized adaptive method is introduced for early IDP detection, leveraging the slope and intercept, along with coupled t-tests to formulate a "sum of slopes" index for detecting the IDP. Secondly, a degradation feature extraction method is introduced, which utilizes synchronous pseudo speed in combination with sliding window averaging. Outlier correction for degradation feature indicators is achieved using constructed boundary conditions. Thirdly, a variational mode decomposition layer is proposed to decompose the input sample into different mode function components. Finally, a novel RUL prediction correction module, where two types of frequency domain feature extractors with trainable parameters are designed to adjust the prediction results of the Spider net by capturing both global trend changes and local details.
Keywords: Remaining useful life; Initial degradation point; Synchronous pseudo speed; VMDLayer decomposition; Interpretability (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832024005908
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024005908
DOI: 10.1016/j.ress.2024.110518
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().